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Coupling modes between two flapping filaments
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The flapping coupling between two filaments is studied theoretically and experi-
mentally in this paper. A temporal linear instability analysis is carried out based on a
simplified hydrodynamic model. The dispersion relationship between the eigen-
frequency ω and wavenumber k is expressed by a quartic equation. Two special
cases of flapping coupling, i.e. two identical filaments having the same length and two
filaments having different lengths, are studied in detail. In the case of two identical
filaments, the theoretical analysis predicts four coupling modes, i.e. the stretched-
straight mode, the antisymmetrical in-phase mode, the symmetrical out-of-phase mode
and the indefinite mode. The theory also predicts the existence of an eigenfrequency
jump during transition between the in-phase and out-of-phase modes, which has
been observed in previous experiments and numerical simulations. In the case of two
filaments having different lengths, four modes similar to those in the former case are
identified theoretically. The distribution of coupling modes for both the cases is shown
in two planes. One is a dimensionless plane of S vs. U , where S is the density ratio of
solid filament to fluid and U 2 is the ratio of fluid kinetic energy to solid elastic potential
energy. The other is a dimensional plane of the half-distance (h) between two filaments
vs. the filament length (L). Relevant experiments are carried out in a soap-film tunnel
and the stable and unstable modes are observed. Theory and experiment are compared
in detail. It should be noted that the model used in our analysis is a very simplified one
that can provide intuitional analytical results of the coupling modes as well as their
qualitative distributions. The factors neglected in our model, such as vortex shedding,
viscous and nonlinear effects, do not allow the model to predict results precisely
consistent with the experiments. Moreover, the Strouhal numbers of the flapping
filaments are found to be generally around a fixed value in the experiments for both
cases, implying that the filaments try to maintain a lower potential energy state.

1. Introduction
The motivation of this research arises from two experiments: one on a flexible fila-

ment in a soap-film tunnel (Zhang et al. 2000) and the other on a heavy flag in a water
tunnel (Shelley, Vandenberghe & Zhang 2005). Both these experiments concern a
deformable elastic body interacting with ambient flowing fluid. The dynamic response
of an elastic body activated by hydrodynamic force is very important in engineering,
such as processing of paper (Watanabe et al. 2002a , b) or a thin film (Han & Shetty
1977) and underwater cables (Veligorskiy 1991), and in biomedicine, such as snoring
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(Huang 1995) and blood flow in a vein (Lee et al. 2005) or the heart (Smith et al. 2004).
The interaction between a deformable elastic body and surrounding fluid also plays
an important role in biological locomotion. For instance, the undulatory propulsion
process in fish swimming involves the coupling of elasticity and body inertia with the
dynamics of a fluid. The difference of a live body from a lifeless one lies in its ability to
actively control muscles through nerves. Therefore, studies of flapping filaments and
swinging flags are helpful in understanding the more complicated biologic phenomena.

The experiments on flexible filaments in a soap-film tunnel by Zhang et al. (2000)
and on heavy flags in a water tunnel by Shelley et al. (2005) showed that for a
deformable elastic body in a two-dimensional incompressible fluid there exists a
critical filament length at a fixed flow rate or a critical incoming velocity for a given
flag length. Below the critical length the filament has a stretched-straight status and
above it the filament starts to flap. Once the filament flaps, as its length decreases, it
continues in the flapping state until reaching a shorter length. For the heavy flag, a
similar phenomenon was observed. Zhu & Peskin (2002) and Farnell, David & Barton
(2004b) simulated the experiments on the flexible filament numerically and found that
its mass and length are both important parameters in determining its unstable state.
A linear stability analysis was carried out by Shelley et al. (2005) based on the work of
Rayleigh (1878) and Crighton & Oswell (1991). In the study of uniform incompressible
fluid flow over an elastic plate by Crighton & Oswell, no external length scale was
imposed and a local analysis was used to find the convective/absolute nature of
instability, while in Shelly’s model and the current study, the length of the filament
is introduced as a characteristic scale and the dimensionless velocity and mass ratios
are used to describe the problem.

The interaction between two identical filaments was studied also experimentally
in a soap film tunnel by Zhang et al. (2000). Two coupling modes of the flapping
filaments, namely the in-phase mode (the filaments flap in the same direction) and the
out-of-phase mode (the filaments flap in the opposite direction), were observed. When
the distance between the two filaments was increased to a critical value, the coupling
mode changed from in-phase to out-of-phase and a concomitant frequency jump
took place. Zhu & Peskin (2003) and Farnell, David & Barton (2004a) numerically
simulated the coupling of two filaments. The mode transition and frequency jump
with increasing distance were verified in their simulations. A frequency increase up
to 41 % was found when the distance between filaments was changed from 10 % to
30 % of the filament length (Zhu & Peskin 2003). A similar result where the frequency
increased approximately 30 % with the distance changing from 10 % to 50 % was
obtained by Farnell et al. (2004a). These results agree well with the 35 % frequency
increase in the experiment (Zhang et al. 2000).

The coupling modes between two flapping filaments can be explained through
stability analyses. Many phenomena involving two coupling interfaces have been
studied theoretically or experimentally using stability analyses, as shown in table 1.
Squire (1953), York, Stubbs & Tek (1953) and Hagerty & Shea (1955) analysed the
Kelvin–Helmholtz instability of a moving planar jet in a gas medium with coupled
disturbances on the interfaces between the sheet and ambient medium, and found that
there were two independent unstable modes, known as the in-phase (sinuous) mode
and the out-of-phase (varicose) mode. Villermaux & Clanet (2002) studied a radially
expanding water sheet in a still ambient gas medium and found that the sinuous
mode was preferred. A planar liquid jet in an ambient liquid medium is another
stability problem on coupling phenomena. A forced weak planar jet creates a pair of
shear layers. Numerical stimulations by Stanley & Sarkar (1997) showed that these
shear layers interact with each other and the jet column could undergo the in-phase



Coupling modes between two flapping filaments 201

Schematic Coupling mode Applications & researche’s
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Table 1. Previous work on coupling interfaces. – – – –, Fluid–fluid interface; —, solid elastic
structure; –·–·–, axis of symmetry.

(sinuous) instability mode and out-of-phase (varicose) instability mode. However,
symmetric forcing completely overwhelmed the natural tendency to transition to the
in-phase column mode downstream. On the other hand, the plane jet can be considered
approximately as a jet with radius approaching infinity. When the jet radius is limited,
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Figure 1. Schematic description of the physical model. U0 is the incoming flow velocity. L1

and L2 are the lengths of filaments, η1 and η2 are the displacements of filaments, θ is the phase
angle between the displacements of two filaments.

it becomes an annular liquid jet, which can have two unstable modes, often referred
to as the para-sinuous and para-varicose modes. Shen & Li (1996) showed that
the ambient gas medium always augments the annular jet instability and that the
curvature effects generally increased the disturbance growth rate. Annular jets of
small thickness tended to break up much faster than the corresponding planar liquid
jet. At relatively large Weber numbers, the para-sinuous mode is predominant. A
similar result was found in coaxial electrospraying (Li, Yin & Yin 2006). Replacing
the fluid–fluid interface with an elastic structure, leads to several other coupling
phenomena. General examples of fluid–elastomer-fluid structure that can be found
in nature include flag flapping (Zhang et al. 2000; Shelley et al. 2005; Argentina
& Mahadevan 2005), snoring (Huang 1995), tubes (Lynch, Waters & Pedley 1996;
Evangelinos & Karniadakis 1999), blood vessels and heart valves in the human body
(Grotberg & Jensen 2004; Smith et al. 2004). The stiffness of solid structure appears
to play an important role in these applications.

The purpose of the current work is to study the coupling modes of two flapping
filaments theoretically and experimentally. The paper is organized as follows. A model
of the coupling filaments in a soap film tunnel is proposed and the temporal linear
instability analysis is carried out in § 2. The experimental set-up is presented in § 3.
Then two cases are studied theoretically and experimentally in § 4: two identical
filaments in § 4.1 and two filaments with different lengths in § 4.2. In the last section
§ 5, the main conclusions are drawn, and the limitations and improvement of the
model are also discussed.

2. Theoretical model and linear stability analysis
A simplified hydrodynamic model of two flapping filaments is shown in figure 1.

In a two-dimensional Cartesian coordinate system, two elastic filaments with length
L1 and L2, respectively, are positioned at y =h and y = −h. The surrounding space
is filled with an incompressible inviscid liquid of density ρ. The distance between two
filaments is d = 2h and the mean velocity of the incoming flow is U0. As a result, the
length from x =0 to x = L is divided by the filaments into three regions where the
velocity fields are denoted by (u1, v1), (u2, v2) and (u3, v3), respectively. The transverse
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displacements of the two filaments from their stretched-straight positions are denoted
by η1 and η2, respectively.

The physical quantities influencing the flapping of a single filament in a soap film
tunnel are as follows: the linear density ml , bending modulus B , length L, flapping
amplitude A and frequency f of the filament; and the viscosity µ, velocity u and
area density ρ = ρf df of the soap film, where ρf is the density of the soap solution
and df is the thickness of the soap film. Selecting u, L and ρ as characteristic scales
of the corresponding physical quantities, the above eight variables can be reduced
to five dimensionless parameters according to the Π theorem. They are S = ml/ρL

denoting the density ratio of solid filaments to fluid, U 2 = ρu2L3/B representing the
ratio of fluid kinetic energy to solid elastic potential energy, the well-known Strouhal
number St = f A/u, the Reynolds number Re = ρuL/µ and the length ratio A/L. For
two coupling flapping filaments, thin distance apart d should be taken into account,
resulting in another dimensionless parameter d/L.

For an incompressible inviscid fluid, neglecting the influence of gravity and
temperature, the flow is irrotational and the governing equations of fluid motion
are,

∇2Φj = 0, uj = ∇Φj, (2.1)

where Φj is the velocity potential, uj is the velocity vector and the subscripts j = 1, 2
and 3 indicate the three flow regions, respectively. For a two-dimensional flow, the
velocity field uj = U0 + u′

j , with the mean velocity U0 = (U0, 0) and the perturbation
of velocity, u′

j . Similarly, the velocity potential consists of the mean and perturbation
parts, i.e. Φj = Φ0j +ϕj , where the potential perturbation ϕj also satisfies the Laplace
equation

∂2ϕj

∂x2
+

∂2ϕj

∂y2
= 0, j = 1, 2, 3. (2.2)

In the temporal linear instability analysis, the perturbation of velocity potential
is decomposed into ϕj = ϕ̂j (y) ei(ωt+kx), j =1, 2 and 3, with ϕ̂j the amplitude of the
initial perturbation, ω the complex frequency and k the real wavenumber. The
corresponding boundary conditions include the boundedness of ϕ1 and ϕ3 at infinity,
and the kinematic boundary conditions at y = h and y = −h. Here the linearized
kinematic boundary conditions are

∂

∂y
ϕj (x, h, t) =

(
∂

∂t
+ U0

∂

∂x

)
η1(x, t), j = 1, 2, (2.3)

∂

∂y
ϕj (x, −h, t) =

(
∂

∂t
+ U0

∂

∂x

)
η2(x, t), j = 2, 3, (2.4)

where the filament transverse displacements ηn (n =1 and 2) are also written as
ηn(x, t) = η0n ei(ωt+kx) with η0n the initial displacement amplitude. The pressure p in
the fluid is obtained through the linearized Bernoulli equation,

pj = −ρ

(
∂

∂t
+ U0

∂

∂x

)
ϕj , j = 1, 2, 3. (2.5)

The transverse displacements of the filaments are governed by the Euler–Bernoulli
equation, (

mln

∂2

∂t2
+ Bn

∂4

∂x4

)
ηn(x, t) = 	pn, n = 1, 2, (2.6)

where mln and Bn are the linear density and bending modulus of the nth filament,
respectively, and 	pn = pn+1 − pn is the pressure jump across the nth filament.
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Substituting the normal mode into the bulk equation (2.2) and the kinematic
boundary conditions (2.3) and (2.4), the solutions of the potential perturbations are
obtained:

ϕ1 = −i
ω + kU0

k
η01 ekh−ky ei(ωt+kx),

ϕ2 = i
ω + kU0

k(e2kh − e−2kh)
[η01(e

−kh−ky + ekh+ky) − η02(e
kh−ky + e−kh+ky)] ei(ωt+kx),

ϕ3 = i
ω + kU0

k
η02 ekh+ky ei(ωt+kx).

Substituting ϕj into equation (2.5), the pressure pj is also obtained. Hence equation
(2.6) results in

(−ml1ω
2 + B1k

4)η01 ei(ωt+kx) = ρ
(ω + kU0)

2 csch(2kh)

k
[η01 e2kh − η02] ei(ωt+kx), (2.7a)

(−ml2ω
2 + B2k

4)η02 ei(ωt+kx) = ρ
(ω + kU0)

2 csch(2kh)

k
[−η01 + η02 e2kh] ei(ωt+kx). (2.7b)

Choosing U0, L1 and ρ as the characteristic velocity, length and density, respectively,
equation (2.7a, b) leads to the following dimensionless equations:

(
−S̄1ω̄

2 + Ū−2
1 k̄4

)
η̄01 =

(ω̄ + k̄)2 csch(2k̄h̄)

k̄
(η̄01 e2k̄h̄ − η̄02), (2.8a)

(
−S̄2ω̄

2 + Ū−2
2 k̄4

)
η̄02 =

(ω̄ + k̄)2 csch(2k̄h̄)

k̄
(−η̄01 + η̄02 e2k̄h̄). (2.8b)

Rearranging the equations above and omitting the overbars on the dimensionless
variables, we have

a1η01 + a2η02 = 0, a2η01 + a3η02 = 0, (2.9)

where

a1 = −S1ω
2 + U−2

1 k4 − 1 + coth(2kh)

k
(ω + k)2,

a2 =
csch(2kh)

k
(ω + k)2,

a3 = −S2ω
2 + U−2

2 k4 − 1 + coth(2kh)

k
(ω + k)2.

Here η01 and η02 are both complex, so the ratio of the initial displacements of two
filaments is defined as

η01

η02

= D eiθ (2.10)

where D and θ are the amplitude and phase angle of the ratio. For the current
problem, we are interested in the phase angle θ; θ = 0 corresponds to the in-phase
mode, and θ = π to the out-of-phase mode.

In order that η01 and η02 have non-trivial solutions, the determinant of the coefficient
matrix in equation (2.9) must be zero, i.e.∣∣∣∣a1 a2

a2 a3

∣∣∣∣ = 0. (2.11)

Equation (2.11) is the dispersion relation between ω and k.
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It should be noted that our model is a very simplified one in which the effects
of vortex shedding from the trailing edge and fluid viscosity are neglected and the
boundary conditions of the leading- and trailing-edges of filaments are not taken
into account. As shown in § 4, this model can provide intuitional analytical results of
the coupling modes of two filaments as well as their qualitative distributing regions.
However, the neglected factors mentioned do not allow this model to predict results
quantitatively consistent with experiments. On the other hand, in the linear instability
analysis, infinitesimal disturbances are assumed and therefore nonlinear effects are
neglected. From this point, the linear instability analysis can only predict the onset of
oscillatory behaviour; however, as can be seen in our experiments, the disturbance is
fully developed in the soap film tunnel where nonlinear effects play a profound role.

3. Experimental set-up
We first introduce briefly the soap film tunnel technique and our experimental

set-up. A liquid film made of surfactant solutions is usually called soap film. Many
classical hydrodynamic experiments on two-dimensional flows have been carried out
using a soap film (Couder 1981; Couder, Chomaz & Rabaud 1989; Gharib & Derango
1989). Trapeznikov (1957) suggested that a soap film consists of two superficial layers
and an interstitial fluid and that the information on the flow field was contained in
the thickness of the film. Chomaz & Cathalau (1990) and Chomaz (2001) analysed
the dynamics of a viscous soap film for the case where the typical length scale
of the flow parallel to the film surface was large compared to the film thickness. They
found that the equations describing the leading-order soap film corresponded to the
classical two-dimensional dynamics only in two limit cases. One is where the elastic
Mach number Me (defined as the ratio of the flow velocity U to the Marangoni elastic
wave velocity ve) (Lucassen et al. 1970) is small (i.e. the flow velocity is lower than the
Marangoni elastic wave speed), and the initial non-uniformity of the film thickness
is small, in which case the soap film flow obeys the two-dimensional incompressible
Navier–Stokes equations and the variation in thickness of the film represents the
velocity field. The other is where Me equals or is larger than unity and both the fluid
viscosity and the surfactant solubility are neglected, in which case the soap film flow
obeys the compressible Euler equations and it behaves like a two-dimensional gas
with an unusual ratio of specific heats equal to unity. In our experiments, the flow
speed is always smaller than the wave traverse speed of the soap film and therefore
the flow can be considered to be two-dimensional and incompressible.

The experiments were conducted in a soap-film tunnel developed in our lab, which
is similar to the apparatus used by Zhang et al. (2000). A detailed description of the
vertical soap-film apparatus can be found in Rutgers, Wu & Daniel (2001). A sketch
of the soap-film tunnel used in our experiments is illustrated in figure 2. The set-up
is 2 m in height with a test section of 90 mm in width. An upper reservoir contains
the soap solution maintained at a fixed pressure head. A stopcock is used to control
flux. Two nylon fishing threads with diameter 1.5 mm are supported by the frame,
connecting the upper reservoir and the lower one. The lower reservoir collects soap
solution for recycling. A pump is used to return the solution to the upper reservoir.
The soap film is driven by gravity. As the solution flows through the stopcock to the
injection point at the top of the tunnel, the soap film accelerates, but soon slows down
due to air resistance. Because of the balance between the air resistance and gravity,
the film soon reaches its terminal velocity in the test section. The velocity of the film
ranges from 1 m s−1 to 2.5 m s−1, which can be instantly tuned through changing the
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Figure 2. Sketch of the soap-film tunnel.

injection rate using the stopcock. The soap film is illuminated by a sodium lamp.
Because the thickness of the film is close to the wavelength of the light emitted from
the sodium lamp, the interference between light rays reflected from the two liquid–air
interfaces of the soap film can be used to visualize the thickness variation of the film,
represented by the colour fringes.

In our experiments, the rigidity of the filament is estimated to be of the order of
10−6 N · cm2 by measuring its distortion under a known force. The velocity of the
soap film is measured using the particle tracking velocimetry (PTV) technique. A
high-speed video camera (Weinberger SpeedCAMpro) and a digital camera (Minolta
DiMAGE 7i) are used to record experiment images.

In order to determine the value of the Reynolds number, the viscosity of the film is
needed. Since the soap film consists of two superficial layers and an interstitial fluid
(Trapeznikov 1957), the surface viscosity µf of the film is simply a combination of
two contributions, which can be expressed as

µf = µb + 2
µs

df

, (3.1)

where µb is the viscosity of the bulk fluid, µs is the surface viscosity of the superficial
layer, and df is the average thickness of the film. Martin & Wu (1995) present
a technique to directly measure the viscosity of the soap film, but equation (3.1)
shows that the viscosity is related to the thickness of film, which varies with the flow
speed. Since the direct measurement method is not suitable, the following method
is employed in our experiments. Experimental studies of cylinder wakes provide two
empirical relationships between the Reynolds number Re and Strouhal number St
(Gharib & Derango 1989; Vorobieff & Ecke 1999; Wen & Lin 2001),

St =
f D

U
=

⎧⎪⎪⎨
⎪⎪⎩

0.212

(
1 − 21.2

Re

)
, Re < 200,

0.212

(
1 − 12.7

Re

)
, Re > 200,

(3.2)

where f is the vortex shedding frequency, D is the diameter of the cylinder, U is
the incoming flow speed and the Reynolds number Re = UD/ν with ν the kinematic
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viscosity. By measuring the vortex shedding frequency f of a cylinder of diameter D

in the soap film at a certain velocity U , the Strouhal number St is determined, and
thus the Reynolds number is obtained through equation (3.2). Then the viscosity of
the soap film at a certain flow speed can be calculated from Re. Using this method, we
measured the kinematic viscosity of the film as ν = 1.22 × 10−5 m2 s−1 when the film
velocity is 1.7 m s−1. The Reynolds number of the flapping filaments is about 2000 or
greater, implying that the inertial force is much greater than the viscous force, and
accordingly the liquid can be treated to be inviscid.

The flapping frequency of the filaments and Strouhal number are two important
parameters measured in experiments. Since the flapping of the filament may be
asymmetrical, the amplitude used in the definition of the Strouhal number is the total
distance between two maximum excursions from one side to the other rather than
the half-distance used in the symmetrical case.

4. Theoretical and experimental results
A theoretical prediction of the coupling modes can be obtained by solving equation

(2.11). The aim of the theoretical analysis is to find the solutions of frequency ω that
correspond to the fastest growth rate −ωi as well as the corresponding wavenumber k.
Substitution of them into equation (2.11) gives the most likely ratio of η01/η02, which
predicts the coupling relationship between two flapping filaments, through the value
of the phase angle θ and amplitude ratio D. In this section, two specific cases will
be studied. By solving the dispersion relation between ω and k, the stability region
and distributions of coupling modes can be identified. Corresponding experiments
are carried out to verify the theoretical predictions.

4.1. Case I: Interaction between two identical filaments

The case of the interaction between two identical flapping filaments is the simplest
one. As the two filaments are identical, i.e. L1 = L2 = L, U1 = U2 = U and S1 = S2 = S,
then a1, a2 and a3 in equation (2.9) can be simplified as follows:

a1 = a3 = −Sω2 + U−2k4 − 1 + coth(2kh)

k
(ω + k)2,

a2 =
(ω + k)2csch(2kh)

k
.

Furthermore, equation (2.11) is written as

a2
1 − a2

2 = 0. (4.1)

So a1 = ± a2 and the ratio of the initial displacements of two filaments is either 1
or −1, that is, D = 1, and θ = 0 or π. This simple conclusion shows that the possible
coupling modes for two identical filaments in a uniform incoming flow are either
the in-phase mode (antisymmetrical flapping) or the out-of-phase mode (symmetrical
flapping), which agrees well with the experimental observation in Zhang et al. (2000).

In the following, details about the coupling modes of two identical filaments are
presented. First, consider a limit case in which the distance d between the filaments
approaches infinity (d → ∞). Consequently a1, a2 and a3 can be written as

a1 = a3 = −Sω2 + U−2k4 − 2(ω + k)2

k
, a2 = 0,
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Figure 3. Stability boundary of a single filament in the (S, U )-plane.

and equation (2.11) reduces to

(ω + k)2 + 1
2
(Sω2k − U−2k5) = 0. (4.2)

This expression is the same as the ω–k relationship for a single flag flapping
in flowing water (Shelley et al. 2005). It is physically reasonable that two flapping
filaments are decoupled when the distance between them is large enough.

The stability boundary of a single filament in (S, U )-plane space is plotted in
figure 3, where the curves are the stability boundaries predicted theoretically and
the diamond symbols indicate the experimental results. Three boundary lines mainly
delineate the following research results. The thick solid line represents the results of
Shelley et al. (2005) and the current paper. Shelley et al. suggested that when the
fundamental mode k =2π becomes unstable, the flag begins to flap. In this paper, we
extend the work of Shelley et al. to the coupling between two filaments. Equation (4.2)
in this paper is the same as the results of Shelley et al.. The region below the thick
line in the figure represents a stable filament having positive temporal growth rate (i.e.
ωi > 0), whereas the upper region, corresponding to ωi < 0, is unstable. Argentina
& Mahadevan (2005) studied a flag with finite length, by dividing the disturbance
velocity potential into a non-circulatory part and a circulatory part, and took into
account the effect of vortex shedding in the calculation of circulatory potential.
Watanabe et al. (2002a) employed an eigenvalue analysis based on a potential flow.
It can be seen in figure 3 that the presents results and Shelley’s approach that of
Watanabe et al.’s theory, but the boundary line predicted by Argentina & Mahadevan
is closer to the experiment results of fluttering paper reported by Watanabe et al.
(2002a).

When two filaments approach each other (d → 0), the other limit case appears, in
which a1, a2 and a3 all tend to infinity and the ratio

lim
h→0

η01

η02

= lim
h→0

−a2

a1

= lim
h→0

cosech(2hk)

1 + coth(2kh)
= lim

h→0
e−2kh = 1, (4.3)



Coupling modes between two flapping filaments 209

S

U

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

II III

I

(a)

0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

II III

I

IV

(b)

0
S

Figure 4. Distributions of the coupling modes for two identical filaments in the (S, U )-plane.
(a) h̄ = 0.1, (b) h̄ = 2.4. I stretched-straight mode (stable mode); II in-phase mode (D = 1 and
θ = 0); III out-of-phase mode (D = 1 and θ = π); IV indefinite mode (D = 1 and θ = 0 or π).

which implies that two filaments are perturbed in the same direction (in phase).
Substituting this ratio into equation (2.9), we obtain

(ω + k)2 + 1
2
[(2S)ω2k − (2U−2)k5] = 0. (4.4)

Compared with the ω–k relationship for a single filament, the only difference is
that S and U−2 are doubled, indicating that the system behaves like a single-filament
system with the mass and bending stiffness of two filaments.

For the general case, the distance d is between two limits and four solutions of ω

in equation (4.1) can be obtained, two from a1 − a2 = 0 and two from a1 + a2 = 0. The
most likely coupling mode is determined by the solution of ω corresponding to the
fastest growth rate of disturbances. Given S and U , the flapping mode can be easily
determined. The distribution of the coupling modes in the (S, U )-plane is plotted
in figure 4. In the figure, four roman numerals denote different coupling modes. I
denotes the stretched-straight mode which means that the filaments remain straight
in the moving soap film. That is, the whole system is stable and no flapping occurs.
II represents the in-phase mode (D =1 and θ = 0), in which the filaments flap in the
same direction. III is the out-of-phase mode (D = 1 and θ = π), in which the filaments
flap in the opposite direction. IV indicates an indefinite mode (D = 1 and θ =0 or π),
in which the flapping mode cannot be determined by the solutions of ω, i.e. both the
modes have the same growth rate and possess an equal likelihood of being observed.

Figures 4(a) and 4(b) show the distributions of the four modes in the (S, U )-plane
for different h̄. Mode I appears at the bottom of both plots, implying that the
filaments in the soap film remain still and stretched-straight unless the dimensionless
parameter U is greater than a certain critical value, in spite of the distance between
two filaments. When h̄ is small, e.g. h̄ = 0.1 shown in figure 4(a), the instability region
is divided into two parts by modes II and III. For relatively small S, the two filaments
flap in the same direction and as S increases the flapping mode becomes the out-of-
phase one. With the value of h̄ increasing, e.g. h̄ = 2.4 shown in figure 4(b), a different
occurs, that is, the indefinite mode IV appears between regions II and III. In region
IV both the in-phase and out-of-phase modes are possible.

In order to compare the theoretical predictions with the experiments, the
distribution of the coupling modes is redrawn in the dimensional (h, L)-plane,
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Figure 5. Distribution of the coupling modes for two identical filaments in the (h,L)-plane.
Parameters: U0 = 170 cm s−1, ρ = 3 × 10−4 g cm−2, m1 = 2 × 10−4 g cm−1 and B = 10−6 N cm2.
(a) The mode distribution with the angular frequency of the fastest growth rate in the region
h =0.1–100 mm and L =5–100 mm. The solid lines are the theoretical boundaries of flapping
modes. The grey-scaled contour plot denotes the angular frequency, which is the real part
of ω corresponding to the fastest growth rate. Frequency jump occurs when mode changes
from II to III. (b) The distribution of the stability domain predicted by the theory and the
experimental results: �, stretched-straight mode; �, in-phase mode; �, out-of-phase mode; �,
transition state between II and III. Dashed lines show calculations with errors of 10−3, 10−6

and 10−9.

as shown in figure 5. The following typical experimental parameters are used
in the calculation: U0 = 170 cm s−1, ρ = 3 × 10−4 g cm−2, ml = 2 × 10−4 g cm−2 and
B = 10−6 N cm2.

In figure 5(a), the mode distribution with the angular frequency in the region
h =0.1–100 mm and L = 5–100 mm is plotted. The solid lines are the theoretical
boundaries of flapping modes. The grey-scaled contour plot denotes the angular
frequency, which is the real part of ω corresponding to the fastest growth rate. The
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angular frequency increases with the value of h, crossing the boundary between mode
II and mode III, implying that a frequency jump occurs when the most likely mode
transforms from in-phase into out-of-phase.

The theoretical predictions are shown in figure 5(b) together with the experimental
results, where the solid lines denote the theoretical results and the symbols are
experimental results. The theoretical results show that when the filaments are very
short, they are in mode I, i.e. the filaments are at rest. The upper boundary of mode I
is almost horizontal, that is, the value of h, which is half of the distance d between two
filaments, has little influence on the stability mode. As the length L of the filament
increases, the filaments enter unstable mode regions. It can be seen that when the half-
distance between two filaments h is small, the flapping modes mainly depend on their
lengths. The short filaments flap in the out-of-phase mode III and the longer ones
in the in-phase mode II. As h further increases, both the unstable modes transform
into the indefinite mode. The indefinite mode exists because the fastest growth rates
ωi of the in-phase and out-of-phase modes are equal in the calculation. The solid line
in figure 5(b) is the results calculated in the float machine-number precision of the
32-bit personal computer we used. If we broaden the calculated error, the boundary
of the indefinite mode will shift to the left. The dashed lines in figure 5(b) represent
the results with errors 10−3, 10−6 and 10−9, as labelled, respectively, Here the error is
defined as the difference between the growth rates ωi of the in-phase and out-of-phase
modes divided by their minimum.

The results of experiments conducted in the soap film tunnel mentioned in § 3 are
also shown in figure 5(b) by the symbols. In the experiments filaments of different
length and different distance apart are tested. In each group of tests, the two filaments
are kept the same length and the distance between them is adjustable. A high-speed
video camera is used to record the coupling modes of the filaments. Symbols in
figure 5(b) present the flapping states. It can be seen in the experiments that when
the filaments are short enough, they remain stretched-straight irrespective of the
distance between them. As the filament length increases, the unstable modes arise. In
the experiments, the critical length of the filament between the stable and unstable
modes is determined to be 9.3 mm, which depends on the properties of the soap film
and the filament. In the figure this critical value is marked by the dotted line that
connected the circle symbols. Above the critical length, the filaments flap in-phase or
out-of-phase depending on the distance between them. When the distance is smaller,
they swing in-phase denoted by the up-triangles. Increasing the distance, they change
into out-of-phase mode denoted by the down-triangles. It is clear that there is a
transition region between them, in which two modes randomly alternate, denoted by
the diamond. The dash-dotted line in figure 5(b) represents the transition boundary
between mode II and III determined in experiments.

Comparing with the theoretical prediction, the mode transition observed in the
experiments shows the correct trend; however, there are three major differences. The
first is that the experimental value of h for the change from the in-phase mode II
to the out-of-phase mode III is much less than predicted in the theory (i.e. the solid
line boundaries between regions II, III and IV), but is close to the dashed line with
the error 10−3. The second is that the theory could not capture the transition region
between in-phase and out-of-phase modes denoted by the diamond symbols. The
third is that the indefinite mode IV predicated by the theory could not be found
in the experiments. The experimental results indicate that the out-of-phase mode is
always observed as h increases. This will be investigated in detail in the following
paragraphs.
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Figure 6. Experimental photos of the coupling between two identical filaments. (a) L = 37 mm,
d = 2.0 mm; (b) L = 37 mm, d =16 mm; (c) L = 15 mm, d = 2.1 mm; (d) L =15 mm, d = 18 mm.

The disagreement between the theory and experiments shows the limitations of
our simplified hydrodynamic model, though it can predict the coupling modes to a
certain extent with a given error. In the simplified model, the neglected vortex shedding
from the trailing edge, the boundary conditions of the leading- and trailing-edges of
filaments and the effect of viscosity do not allow the results to predict quantitatively
experiments. In the linear instability analysis, infinitesimal disturbances are assumed
and nonlinear effects are neglected. Thus the linear instability analysis can predict
the onset of oscillations; however, as we see in the experiments, the disturbance is
fully developed in the soap-film tunnel where nonlinear effects play a profound role.
Shortcomings of the theoretical model result in the mode transition taking place later
than the experiments as the distance between filaments increases.

Two groups of filaments with lengths of 37 mm and 15 mm are studied in detail.
Figure 6 shows typical photos taken in the two groups of experiments. Figures 6(a)
and 6(b) are for filaments of 37 mm length with separations of 2.0 mm and 16 mm,
respectively. When the distance between the filaments is shorter, the flapping is in-
phase. As the distance increases, the flapping becomes out-of-phase. Figures 6(c) and
6(d) are for 15 mm filaments with separations of 2.1 mm and 18 mm respectively,
where both are in the out-of-phase mode.

In figure 6, vortices are shed from the trailing edges of filaments in the form of
primary vortex shedding with shear layer instability, like the Kármán vortex street
behind a cylinder at high Re (Williamson 1996). A concentrated vortex is formed when
the trailing edges of filaments reach their maximum amplitudes and then is carried
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Figure 7. Frequency and Strouhal number for the case of two identical filaments.
(a) Frequency jump, (b) L = 37 mm, (c) L =15 mm.

downstream by the flowing soap film. A series of small eddies appears along the shear
layer connected with the concentrated vortices due to the shear layer instability. In
figure 6(a) where two long filaments are very close together, the flapping mode is
obviously in-phase. However, as the distance increases, the flapping mode becomes
out-of-phase, where the clapping motion of two filaments is symmetrical relative to
the midline and the wake downstream is also symmetrical, as shown in figure 6(b).
However, in the case of two shorter filaments, though the distance between two
filaments is very small, the flapping mode is still out-of-phase (see figure 6c). Owing
to the opposite direction of motion, the swing of two filaments is limited and the
vortices shed are deformed. When the distance between the filaments is large enough,
they can swing freely and the wakes downstream are rather beautiful and symmetrical,
where vortices of opposite sign are formed and roll up into a mushroom shape. Zhu
& Peskin (2003) described such phenomena in their numerical simulation.

The experimental results of the flapping frequency and Strouhal number are shown
in figure 7. The flapping frequency increases with the distance between filaments. The
frequency jump occurs when the coupling mode changes from in-phase into out-of-
phase. Figure 7(a) shows the frequency jump in two groups of experiments as well
as the data of previous works (Zhang et al. 2000; Zhu & Peskin 2003; Farnell et al.
2004a). For the group of long filaments with L = 37 mm as shown in figure 7(b), the
frequency jump takes place at d = 7.5mm where the mode transforms from in-phase
to out-of-phase. The coupling mode is in-phase when the distance d < 7.5 mm and is
out-of-phase when d > 9.8 mm. The coupling mode between d = 7.5 mm and 9.8 mm
is uncertain, alternating between two modes randomly. For the short group L = 15 mm
as shown in figure 7(c), the jump occurs at d =2.1 mm. When d < 2.1 mm, the coupling
mode is in-phase, whereas when d � 2.1 mm, it is out-of-phase. For relatively larger
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distances, such as d = 12.6 mm or greater, the flapping becomes somewhat decoupled.
The values of Strouhal number in both groups are approximately 0.2. In the same
group, the Strouhal numbers of two filaments are slightly different. This is because
the amplitudes of the two filaments have small differences. The experimental results
qualitatively agree with the theoretical prediction for the mode transition and the
derived frequency jump when the distance is increased.

In the experiments the Strouhal number representing the mechanism of the
oscillating flow should be specifically studied. The experimental results show that
the Strouhal numbers are close to a fixed value of around 0.2 in each group. The
interaction between the filaments and vortex shedding is very complicated. On the
one hand, the filaments enhance the vortex shedding from them. On the other hand,
the filaments themselves are excited by these vortices. This phenomenon is somewhat
like the flapping movements of self-propelled animals such as fishes and birds. The
animals bend their body to generate and enhance vortices, causing a reverse Kármán
vortex street that propels them forward or backward in an efficient way. In general,
their Strouhal numbers are in a range around 0.3 (Triantafyllou, Triantafyllou &
Gopalkrishnan 1991; Taylor, Nudds & Thomas 2003). Natural selection helps animals
to obtain the highest propulsive efficiency, that is, at this Strouhal number animals
use minimal energy to propel themselves over a longer distance. The Strouhal number
of filament flapping indicates that the fundamental flapping mode may correspond
to the minimal energy state (Farnell et al. 2004a). The out-of-phase mode has a
higher frequency than the in-phase one when the Strouhal number is around 0.2,
implying that the flapping amplitude of the out-of-phase mode is smaller than that
of the in-phase one. The smaller amplitude can help maintain the filament at a lower
potential energy level. This may be one of the reasons why the out-of-phase mode
predominates in the indefinite mode region.

4.2. Case 2: Interaction between two filaments having difference lengths

A more general case, i.e. the interaction between two filaments having different lengths,
is considered in this subsection. In order to compare with experiments, a special case
is studied: two filaments have identical material properties but one filament is twice
as long as the other. General cases with different length ratios can be dealt with in
a similar way. Suppose L1 = L2/2 = L, U1 =U2/2

√
2 = U and S1 = 2S2 = S. Similar to

the analysis process of two identical filaments in § 4.1, the solution of ωi corresponding
to the fastest growth rate of disturbances can be found by solving the ω–k equation
(2.11). Substituting the solution into equation (2.10), we obtain the phase angle θ

of the initial displacements as well as the amplitude relationship D of the filament
flapping. Unlike the case of two identical filaments, the calculations show that the
phase angle θ of η01/η02 is not strictly 0 or π. There exists a distribution of θ from
−π to π.

Figure 8 shows the contours of the phase angle θ in the dimensionless (S, U )-plane
for this case. The values in the figure are in the units of degrees which is easier to
understand than radians. The unstable region is divided into two parts: one has a
phase angle close to 0◦ and the other close to 180◦. Therefore in the present case
there exist modes close to in-phase and out-of-phase. The value of h̄ in figure 8 is
0.1. When h̄ is greater, e.g. h̄ = 2.4, the phase angle θ in the unstable region becomes
chaotic, that is, the filaments decouple.

Figure 9 shows the distribution of the phase angle θ in the dimensional (h, L)-plane
where the experimental parameters are the same as in figure 5. The contour lines
represent values of the phase angle θ in degrees. This plot is similar to figure 5(a): the
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stretched-straight mode exists in the stable region, and the other three modes, namely
the in-phase-like mode, the out-of-phase-like mode and the decoupled mode, exist in
the unstable region of the plot.

Because the two filaments studied in this case have different lengths, they can be
positioned in two ways, i.e. top aligned and bottom aligned. In the experiments both
the in-phase-like mode and out-of-phase-like mode were observed. And the decoupled
state with a time-varying phase angle was also observed. Figures 10 and 11 show
experimental photos for the cases of top aligned and bottom aligned, respectively,
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Figure 10. Experiment photos of the coupling between two different length filaments (top
aligned). Left filament L = 30 mm, Right filament L = 15 mm. (a) d = 1.5 mm, (b) d = 2 mm
and (c) d =10 mm.
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Figure 11. Experiment photos of the coupling between two different length filaments (bottom
aligned). Left filament L =30 mm, right filament L = 15 mm. (a) d = 1.7 mm, (b) d = 7.2 mm
and (c) d =13.6 mm.

where the length of the shorter filament is 15 mm and that of the longer one is
30 mm. The values of the distance d between the filaments are 1.5 mm, 2.0 mm and
10 mm in figures 10(a)–10(c) and 1.7 mm, 7.2 mm and 13.6 mm in figures 11(a)–11(c),
respectively. Figure 12 illustrates the frequency and Strouhal number of the filament
flapping in the experiments, where figure 12(a) is for the top-aligned case and figure
12(b) for the bottom-aligned one. It can be seen in figure 12(a) that when the
separation d is very small (such as the in-phase-like mode in figure 10a) the flapping
mode is in-phase-like and the flapping frequency is low. However, when the value
of d increases a little, the mode changes into out-of-phase-like (figure 10b) and the
frequency jump occurs simultaneously. As the distance increases continuously, the
filaments decouple, namely, each filament flaps at its own frequency that is close to
the value for a single filament. In figure 12(b) the longer filament is predominant in
the in-phase-like mode and its flapping frequency is much close to that of a single
filament having a length of 30 mm. The mode transition of the bottom-aligned group
occurs at a much larger separation than that of the top-aligned group. The flapping
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Figure 12. Frequency and Strouhal number for the case of two filaments with different
lengths. Left filament L = 30 mm, right filament L = 15 mm. (a) Top aligned, (b) bottom
aligned.

mode remains in-phase-like when d is smaller than 9.7 mm, and when d exceeds this
critical value the filaments decouple and flap at their own frequencies. The values of
the Strouhal number for these two groups are approximately 0.2, but the difference
of St between two filaments is larger than for the identical case. The existence of the
longer filament affects the swing of the shorter one, especially for the in-phase-like
mode.

In this simplified model, the positions of the filament ends are not specified. When
the filaments have different lengths and their heads are located on the same horizontal
line, the vortices shed from the shorter filament may change the flapping state of the
longer one and result in a variation of coupling mode. When the trailing edges of
two filaments are set on the same horizontal line, the swing of the foreside of the
longer filament may interfere with the incoming flow of the shorter one, which can
also cause a variation of coupling mode. But this effect is much smaller than that of
the shedding vortices. Thus for the bottom-aligned group the mode transforms at a
much larger separation than the top-aligned group.

5. Conclusion and discussion
In this paper the coupling behaviours between two flapping filaments are studied

both theoretically and experimentally. A simplified hydrodynamic model is developed
and temporal linear instability analysis is employed in order to obtain the ω–k

dispersion relationship that predicts the distribution of flapping modes. Two special
coupling cases are considered: one for two identical filaments and the other for two
filaments having different lengths.

In the case of two identical filaments, the theoretical results predict an
antisymmetrical in-phase mode, a symmetrical out-of-phase mode and an indefinite
mode appearing between the in-phase and out-of-phase modes in the dimensionless
(S,U )-plane. And in the dimensional (h,L)-plane, the indefinite mode appears when h

increases to a critical value. However, when h is sufficiently large, the two filaments
ultimately decouple. In addition, a frequency jump occurs when the flapping mode
transforms from in-phase to out-of-phase. The experimental results are in qualitative
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agreement with the theoretical predictions. The values of the Strouhal number in this
case are around 0.2.

In the case of two filaments having different lengths, the theoretical results predict
three groups of coupling modes similar to those for the identical filaments. Modes
having phase angle θ close to both 0 and π are observed in the experiments. In
addition, the two filaments decouple when the distance between them is large enough,
and in such a case the phase angle varies from over time. The experimental results
also agree with the theoretical prediction qualitatively. The values of the Strouhal
number are all around 0.2, as in the former case, implying that the fundamental
flapping mode may correspond to the minimal energy state.

The current work is based on a simplified hydrodynamic model which can be
regarded as an extension of the single-flag model proposed by Shelley et al. (2005).
The merits of this model are that some intuitional results can be obtained readily
and that the coupling modes can be predicted qualitatively. The shortcomings
are that the effects of viscosity and vortex shedding are neglected and that the
boundary conditions of the leading- and trailing-edge of the filaments are not
taken into account. Hence, we cannot obtain results quantitavely consistent with
the experiments. A more thorough investigation of the effects of fluid viscosity and
vortex shedding on the instability may help clarify the discrepancies between theory
and experiment. A more precise hydrodynamic model, which considers the finite
length of the filament, the Kutta condition and vortex shedding at the trailing edge
and the effect of viscosity, should be developed in the future and the theoretical
understanding of nonlinear behaviours also remains an open problem.

This work was supported by the National Natural Science Foundation of China
(Project No. 10332040, 10572137) and the Innovation Project of CAS (Project No.
KJCX2-SW-L04).
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